Programma
1 - Tipi di scala e di misurazione. Statistica descrittiva per distribuzioni univariate. Costruzione delle tabelle e rappresentazione grafiche per variabili quantitative e variabili qualitative: istogrammi, poligoni, rettangoli distanziati, diagrammi circolari. I pittogrammi e il lie factor. Indici di tendenza centrale, di dispersione, di simmetria e di curtosi. Numero di decimali e di cifre significative.
Esercizi di statistica descrittiva con uso del programma PAST.
2 - Calcolo combinatorio, distribuzione binomiale, poissoniana, ipergeometrica. La distribuzione normale e la normale ridotta. Esercizi con uso della normale ridotta e delle tabelle z.
3 - Confronti tra tassi e probabilità. La distribuzione chi quadrato. Test per la bontà dell’adattamento; condizioni di validità e correzione di Yates. Tabelle di contingenza 2 x 2 e R x C, per campioni piccoli e grandi: metodo esatto di Fisher e test z in tabelle 2 x 2.
Il metodo G o log-likelihood ratio nei test per la bontà dell’adattamento e in tabelle di contingenza.
Esercizi sul test chi-quadrato per la bontà dell’adattamento e in tabelle di contingenza con PAST
4 - Errore alfa e errore beta; potenza a priori e a posteriori. Stima delle dimensioni dei campioni per il confronto tra medie con la distribuzione normale. Numero di dati per una misura con la precisione desiderata
5 - La distribuzione t di Student. Test per la media di un campione e intervallo di confidenza della media. Confronto tra le medie di due campioni dipendenti e di due campioni indipendenti. Test per l’omogeneità della varianza; test F, test di Bartlett, test di Levene. Cenni sui metodi per il confronto tra due medie con varianze differenti. Stima delle dimensioni minime dei due campioni, con la distribuzione t e la distribuzione z. Il bilanciamento di 2 campioni.
Esercizi sul test t di Student con il programma PAST, con varianze uguali e diverse.
6 - Analisi della varianza (ANOVA) a un criterio (one-way): il confronto tra due o più medie. Distribuzione F di Fisher-Snedecor e relazione con la distribuzione t di Student. Condizioni di validità dell’ANOVA e test per l’omoschedasticità con k campioni: test di Hartley, test di Cochran, test di Bartlett, test di Levene e sue varianti. Confronti multipli a priori o pianificati; confronti multipli a posteriori o post-hoc: il rischio alfa e il principio di Bonferroni; i metodi Bonferroni-Dunn, HSD di Tukey, SNK e i metodi sequenziali, il test di Dunnett, il test Duncan. Applicazioni dell’ANOVA e dei confronti multipli con il programma PAST.
Esercizi sull’ANOVA con il programma PAST.
7 - Analisi della varianza con due (two way) e con più criteri crossed. Metodi per ridurre il numero di osservazioni: i quadrati latini. Efficienza relativa di un disegno sperimentale. La perdita di dati in tabelle a due o più fattori crossed. Analisi dell’interazione tra due fattori, con misure ripetute. Interpretazione dell’interazione, con rappresentazioni grafiche. Analisi gerarchica o nested a due e a più livelli. Interazione nell’ANOVA a più fattori, crossed, nested e mista.
Assunzioni di validità dell’ANOVA, trasformazioni dei dati; il metodo di Box-Cox per la trasformazione più adeguata.
8 - Statistica descrittiva per distribuzioni bivariate. Regressione lineare semplice: stima del coefficiente angolare b e dell’intercetta a; significatività e intervallo di confidenza del coefficiente angolare e dell’intercetta. Scelta del campione per la significatività del coefficiente angolare e dell’intercetta. Il coefficiente di determinazione R-quadro. La regressione per l’origine: vantaggi e svantaggi. La predizione inversa o calibrazione. Confronto tra i coefficienti angolari di due campioni indipendenti. Concetti sull’analisi della covarianza (confronti tra medie di Y con X diversi).
La regressione lineare con Y ripetute. Calcolo dei termini della regressione mediante i coefficienti polinomiali. Test di linearità con Y ripetute, in campioni non bilanciati. Cenni sulla regressione pesata per la varianza e il numero di dati; sua calibrazione.
La correlazione: stima dell’indice di correlazione r di Pearson e sua significatività. Relazioni tra coefficiente angolare b e indice r di correlazione lineare. Intervallo di confidenza di r. La correlazione parziale o netta.
Applicazioni della regressione lineare e della correlazione con il programma PAST.
9 - Test per un campione: test delle successioni; test dei segni; test di Wilcoxon; intervallo di confidenza di una mediana; test di casualizzazione. Il test di Kolmogorv-Sminov.
Test per due campioni dipendenti: test dei segni, test T di Wilcoxon, test di casualizzazione.
Test per due campioni indipendenti: test della mediana, test T di Wilcoxon-Mann-Whitney, test U di Mann-Whitney, test di casualizzazione; il test di Levene non parametrico per differenze nella variabilità.
Test per k campioni: test della mediana; test di Kruskal-Wallis o ANOVA non parametrica a un criterio: test di Friedman o ANOVA non parametrica a due criteri; test di Jonckheere-Terpstra; test di Page.
La correlazione non parametrica; rho di Spearman e tau di Kendall.
La retta non parametrica o retta robusta di Theil.
|